Sequentially Updated Residuals and Detection of Stationary Errors in Polynomial Regression Models
نویسنده
چکیده
The question whether a time series behaves as a random walk or as a stationary process is an important and delicate problem, particularly arising in financial statistics, econometrics, and engineering. This paper studies the problem to detect sequentially that the error terms in a polynomial regression model no longer behave as a random walk but as a stationary process. We provide the asymptotic distribution theory for a monitoring procedure given by a control chart, i.e., a stopping time, which is related to a well known unit root test statistic calculated from sequentially updated residuals. We provide a functional central limit theorem for the corresponding stochastic process which implies a central limit theorem for the control chart. The finite sample properties are investigated by a simulation study.
منابع مشابه
Variance Estimation in Spatial Regression Using a Nonparametric Semivariogram Based on Residuals
The empirical semivariogram of residuals from a regression model with stationary errors may be used to estimate the covariance structure of the underlying process. For prediction (kriging) the bias of the semivariogram estimate induced by using residuals instead of errors has only a minor eeect because the bias is small for small lags. However, for estimating the variance of estimated regressio...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملمدلسازی و پیشبینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف
In this study we compare a set of Markov Regime-Switching GARCH models in terms of their ability to forecast the Tehran stock market volatility at different time intervals. SW-GARCH models have been used to avoid the excessive persistence that usually found in GARCH models. In SW-GARCH models all parameters are allowed to switch between a low or high volatility regimes. Both Gaussian and fat-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008